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 15 

Abstract: Wastewater treatment plants (WWTPs) can account for up to 1% of a 16 

country's energy consumption. Meanwhile, WWTPs have high energy-saving potential. 17 

To achieve this, it is necessary to establish appropriate energy consumption models for 18 

WWTPs. Several recent models have been developed using logarithmic, exponential, 19 

or linear functions. However, the behavior of WWTPs is non-linear, and difficult to fit 20 

with simple functions particularly for non-numerical variables. Thus, traditional 21 

modeling methods cannot effectively describe the relationship between water and 22 

energy in WWTPs. Therefore, a machine learning method was adopted in this study to 23 

investigate the energy consumption in WWTPs; a novel energy consumption model 24 

with a non-numerical variable (discharge standard) for WWTPs was developed using 25 

the random forest algorithm. The model can also predict the energy consumption of 26 

WWTPs after upgrading discharge standards. We found that the unit electricity 27 

consumption of WWTPs exhibited an average increase of 17% after the effluent 28 
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discharge standard was raised from Class I B to Class I A (per China’s classification). 29 

The correlation coefficient of the model was 0.702. Thus, the developed model can 30 

provide a better understanding of energy efficiency in WWTPs. 31 

Keywords：Machine learning; random forest; energy efficiency; energy consumption 32 

model; wastewater treatment plant 33 

 34 

1. Introduction 35 

Improving energy efficiency of WWTPs is receiving increasing attention, as saving 36 

energy can help reduce economic costs and conserve the resources and environment 37 

(E.Açıkkalp, 2018). With continuous development and accelerating urbanization in 38 

society, wastewater discharge is rapidly increasing (Habib et al. 2020) and water quality 39 

requirements are more stringent; therefore, the total energy consumption of WWTPs is 40 

also increasing. WWTPs are the primary energy-consuming units of the urban water 41 

cycle (Sabia et al. 2020). Thus, the high energy consumption of WWTPs has become a 42 

global concern. It has been estimated that in 2018 the energy demand of WWTPs in 43 

some European countries accounted for 1% of the energy consumption of the entire 44 

country (Sabia et al. 2020). What’s more, the U.S. municipal wastewater treatment 45 

systems use approximately 30.2 billion kWh per year, which is about 0.8% of the total 46 

electricity use in the U.S. (EPRI, 2013). In recent years, several energy evaluation 47 

methods have been proposed (e.g., Hernández-Sancho et al. 2009, Mizuta et al. 2010, 48 
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Molinos-Senante et al. 2014) to investigate the energy consumption of WWTPs. In 49 

these methods, the energy consumption of WWTPs is commonly related to factors such 50 

as the capacity and influent and effluent concentrations of pollutants (Torregrossa et al. 51 

2016).  52 

Many stakeholders have been exploring solutions to reduce the energy consumption of 53 

WWTPs, such as equipment renewal and maintenance (Daw et al. 2012), energy 54 

recovery (Behera et al. 2020), and technical process improvements (Farahbakhsh et al. 55 

2020). Previous studies have been mostly focused on technical processes. However, 56 

with the use of new equipment, technologies, and new standards, the change in energy 57 

consumption has gradually attracted significant attention (Sabia et al. 2020). With 58 

increasing urban wastewater discharge and high requirements of clean water, new 59 

WWTPs are regularly established, and the discharge standards of the old WWTPs have 60 

gradually improved (Smith et al. 2019). However, a larger process capacity and higher 61 

standards may lead to higher energy consumption. Therefore, while considering water 62 

quality, one should also focus on the energy efficiency of WWTPs. 63 

Machine learning is an important and relatively novel method in environmental 64 

modeling, particularly with regards to energy efficiency (e.g., Wang et al. 2019) or 65 

WWTP operations (e.g. Hernandez-del-Olmo et al. 2019). Machine learning can be 66 

utilized in a real-time agent modeling, employing real-time data so that operators can 67 

forecast WWTP’s future operating status; the model itself can be improved 68 
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continuously as new data becomes available, with the ability to adopt non-linear 69 

relationships. Once a set of inputs and corresponding outputs are presented to the model, 70 

it learns the relationship between the inputs and outputs. Accordingly, for a new set of 71 

inputs, the trained model can generalize this relationship to produce the corresponding 72 

outputs (e.g., Heslot et al. 2014, Song et al. 2017, Xing et al. 2019, Zhu et al. 2020). 73 

Random forest is an ensemble learning algorithm used for classification (e.g., Duro et 74 

al. 2012), regression (e.g., Wei et al. 2019), and other tasks (e.g., Chen et al. 2018). 75 

During training, numerous decision trees are generated to operate and finally obtain 76 

prediction results (e.g.,Tian et al. 2020); therefore, random forest has a high prediction 77 

accuracy, and is not prone to overfitting (e.g., Breiman 2001). Random forest is one of 78 

the most popular methods in data mining (e.g., Wylie et al. 2019) and big data fields 79 

(e.g., Pamulaparty et al. 2017); it has the advantages of a fast-training speed and is 80 

suitable for processing high-dimensional data (e.g., Belgiu and Dragut 2016). The 81 

method has been widely used in several other fields, such as medicine (Yeşilkanat 2020), 82 

criminal investigation (Tian et al. 2020), and architecture (Cheng et al. 2020). Random 83 

forest has also been applied to environmental engineering, such as for mapping canopy 84 

nitrogen (Loozen et al. 2020) and in environmental assessment (Paul et al. 2020). 85 

However, random forest is rarely used to analyze and predict energy consumption of 86 

WWTPs (e.g., Bagherzadeh et al. 2021, Perez et al. 2021). Data Envelopment Analysis 87 

(e.g., Yang et al. 2021, Huang et al. 2021) and Multiple Linear Regression (e.g., Xu et 88 
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al. 2018) are commonly used methods to analyze the energy efficiency of WWTPs. The 89 

main principle of Data Envelopment Analysis is using the method of linear 90 

programming and Multiple Linear Regression is a kind of generalized linear model. 91 

However, Data Envelopment Analysis cannot be used when some data is missing, and 92 

it cannot predict the future trend in a statistical way. Multiple Linear Regression cannot 93 

achieve the accuracy we need. 94 

This study aims to develop an energy consumption model of WWTPs through machine 95 

learning, using data from 2,472 WWTPs in China, employing the random forest 96 

approach. This model is expected to provide a better understanding of energy 97 

consumption in WWTPs. 98 

 99 

2. Data and Methods 100 

2.1 Data Sources 101 

The data of this study was collected from the 2015 Urban Drainage Yearbook of China. 102 

A total of 2,472 entries were selected from this yearbook with relatively complete and 103 

reliable data. For the energy consumption of WWTPs, the energy consumed by 104 

processing 1 m3 wastewater is often used as an evaluation indicator of the energy 105 

intensity of WWTPs (Scott et al. 2011). Related studies (e.g., Mjalli et al. 2007, 106 

Gazendam et al. 2016, Trenouth et al. 2018, Habib et al. 2020) commonly use electricity 107 

intensity (kWh/m3) to indicate the energy consumption of WWTPs. In this study, the 108 
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following parameters from the Yearbook, which have also been used in related studies 109 

(Mjalli et al. 2007, Gazendam et al. 2016, Trenouth et al. 2018, Habib et al. 2020), have 110 

been adopted as the primary factors affecting the energy consumption of WWTPs: 111 

influent BOD5 concentration (BODi), influent COD concentration (CODi), influent 112 

NH3-N concentration (NH3-Ni), effluent BOD5 concentration (BODe), effluent COD 113 

concentration (CODe), effluent NH3-N concentration (NH3-Ne), effluent discharge 114 

standards, wastewater treatment capacity, annual load rate (actual treatment capacity 115 

divided by designed treatment capacity), moisture content of sludge, and dry weight of 116 

sludge. The discharge standards primarily include Class I A, Class I B, and Class II, 117 

referring to the Chinese National Standard, Discharge standard of pollutants for 118 

municipal wastewater treatment plant (GB 18918-2002). 119 

2.2 Data Cleaning 120 

To import data to develop the model, all numerical data (including int64, float64) was 121 

converted to float64, all non-numerical data (including string and object, such as the 122 

discharge standard) was transferred into the object, and all the default data was 123 

converted to NaN (Not a Number). 124 

Since a few of the WWTPs did not have the “unit electricity consumption” (UEC) 125 

parameter in the Yearbook, to ensure the reliability of the model, we removed the data 126 

for those 85 WWTPs, so that the number of the remaining WWTPs was 2,387. 127 

Although there were some outliers, the data base is large and Random Forest model is 128 
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good at dealing with this situation, so there was no need to eliminate them. Essentially, 129 

the basic learner of random forest is robust to outliers, which makes the random forest 130 

algorithm robust to outliers. Unlike linear regression, the entire space in linear 131 

regression has the same equation, so a very simple model can be locally fitted to each 132 

subspace. 133 

In the case of regression, it is usually a very low-order regression model. Therefore, for 134 

regression, extreme values do not affect the entire model because they are averaged 135 

locally. 136 

 137 

2.3 Preprocessing of Regression Variables 138 

The numerical variables can be directly applied to the regression. For the object type 139 

variables, such as discharge standards, their classification scheme was transformed into 140 

a matrix with 0 and 1 values, such that, the row of the matrix represents the different 141 

WWTPs, and the column represents the different discharge standards. A value of 1 142 

indicated that the WWTP represented by this row used the discharge standard of this 143 

column. Otherwise, a value 0 was assigned. For example (Fig. 1), the discharge 144 

standards of WWTP A, WWTP B, and WWTP C are Class I A, Class II, and Class I B, 145 

respectively. Therefore, the sum of each row in the matrix is 1, and the sum of each 146 

column equals the total number of WWTPs using the discharge standard of this column. 147 

In this study, numerical values (e.g., 1, 2, 3, etc.) were not used to represent the different 148 
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discharge standards. This is because the values themselves include the potential 149 

relationship of size or numerical operation, and substituting a relationship which is 150 

unrelated to the statistical content into the regression model will lead to model deviation. 151 

 152 

Fig. 1 Matrix of discharge standard in WWTPs 153 

 154 

2.4 Random Forest 155 

A preliminarily evaluation of the relationship between UEC (kWh/m3) and other 156 

parameters was performed using Python, to conduct Multiple Linear Regression 157 

analysis between UEC and BODi, CODi, NH3-Ni, BODe, CODe, NH3-Ne, wastewater 158 

treatment capacity, annual load rate, moisture content of sludge, and dry weight of 159 

sludge. It was found that R2 ≤ 0.2, which is too small, thus the regression equation was 160 

not sufficiently reliable. Moreover, the discharge standard is a character-type variable 161 

that cannot be included in the statistics and effectively predict its influence by Multiple 162 

Linear Regression. Owing to the high correlation between the parameters, a large fitting 163 

deviation occurred when using the Multiple Linear Regression method to obtain the 164 

relationship between UEC and dependent variables. In addition, the use of a Multiple 165 

Linear Regression model is limited in this case because of the existence of non-166 

numerical variables, such as the discharge standard.  167 
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Machine learning algorithms like TensorFlow or Keras require very large databases, 168 

which are not available for this study. While there are machine learning algorithms like 169 

Lars, Lasso or Support Vector Machine (SVM) which only need small databases, they 170 

cannot reach the accuracy needed for this study. Therefore, we considered a subset of 171 

machine learning algorithms, including Random Forest (RF), Boosting Tree, Gradient 172 

Boosting Decision Tree (GBDT) and XGBoost. These algorithms are actually 173 

combination of different algorithmic frameworks and decision trees (Detail see Table 174 

S1), so they perform quite similarly. We selected Random Forest because it is the only 175 

algorithm that can show us the importance of each variable, which is very valuable for 176 

the subsequent analysis. 177 

Therefore, a random forest algorithm was introduced to extract the relationship between 178 

UEC and the different variables, including non-numerical ones. Simultaneously, the 179 

factors indicating the influence of each variable on UEC were calculated, and then the 180 

factors that significantly affected UEC were selected for further analysis and to develop 181 

a model for evaluating the UEC. Finally, the change in UEC was calculated using the 182 

model after a simulated improvement of the discharge quality to meet a higher standard, 183 

which can help in future management of WWTPs. 184 

The steps conducted for the random forest approach were showed in Fig. 2.  185 

From a mathematical perspective, a complex functional relationship exists between 186 

independent variables and dependent variables, which is composed of the basic 187 



 

10 

 

operations of independent variables. Random forest approximates the coefficients 188 

before each dependent variable by learning from a large amount of data. All the models 189 

in this study were coded in Python 3.7.3, and the prediction curves were plotted from 190 

the Python data using MATLAB R2018a. 191 

 192 

Fig. 2 Process flow of the random forest method 193 

 194 

2.5 Model Validation 195 

Random forest uses a bootstrapping algorithm for sampling. As the bootstrapping 196 

algorithm returns samples after sampling, some data are not extracted. By calculating 197 

the limit, it was observed that approximately 1/3 of the data were not extracted. 198 

Because out-of-bag (OOB) data were not been used, random forest can use these data 199 

for model validation. Moreover, as each sample obtained by bootstrap trains a small 200 

model Sn, the OOB data can be tested for each model of the sample.  201 

The self-detection of the model uses the mean squared error (MSE), average absolute 202 

percentage (MAPE), root mean square error (RSME), mean absolute error (MAE), 203 

median absolute error (MedAE) and mean squared logarithmic error (MSLE) (Zhong 204 
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et al. 2021, Gupta et al. 2021) as follows:  205 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡))

2𝑛
𝑡=1      (1) 206 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡)|

𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)
𝑛
𝑡=1 × 100%    (2) 207 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡))

2𝑛
𝑡=1 = √𝑀𝑆𝐸   (3) 208 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡)|𝑛

𝑡=1     (4) 209 

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑎𝑐𝑡𝑢𝑎𝑙(𝑡1) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡1)|, … , |𝑎𝑐𝑡𝑢𝑎𝑙 (𝑡𝑛)  − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡𝑛)|) (5) 210 

𝑀𝑆𝐿𝐸 =
1

𝑛
∑ (log𝑒(1 + 𝑎𝑐𝑡𝑢𝑎𝑙(𝑡)) − log𝑒(1 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡)))

2𝑛
𝑡=1   (6) 211 

where n is the number of decision tree model, 𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) is the actual UEC of a 212 

WWTP, and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡) is the predicted UEC of a WWTP. 213 

 214 

2.6 Data Preprocessing  215 

Certain evident linear relationships exist between some variables in the Yearbook, 216 

which were removed before modeling to obtain a model with improved accuracy. 217 

 218 

Fig. 3 Scatter plot and linear regression curve of  219 

(a) BODi/BODe, (b) CODi/CODe, and (c) NH3-Ni/NH3-Ne. 220 
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In Fig. 3, each point in the figure represents a WWTP dataset, and it may be noted that 221 

the BODi and BODe, CODi and CODe, NH3-Ni and NH3-Ne, for most WWTPs are 222 

evenly distributed along a straight line. The light-red area around the regression curve 223 

represents the confidence interval. Therefore, we performed a linear regression between 224 

BODi and BODe, CODi and CODe, NH3-Ni and NH3-Ne, which showed that the linear 225 

correlation between BODi and BODe, CODi and CODe, NH3-Ni and NH3-Ne was high. 226 

At the same time, the correlation between each variable was reduced to the lowest 227 

possible limit to improve the accuracy of machine learning. In this study, the removal 228 

ratios BODi/BODe, CODi/CODe, and NH3-Ni/NH3-Ne were used instead of a single 229 

variable for analysis, which practically represent the reduction multiple of BOD, COD, 230 

and NH3-Ne of treated wastewater. 231 

 232 

2.7 The Importance of Features 233 

The importance of a feature X in a random forest was calculated as follows: 234 

A. For each decision tree in a random forest, the corresponding OOB data were used 235 

to calculate the OOB data error, which was recorded as errOOB1. 236 

B. Random noise interference was added to the characteristic X of all samples of the 237 

OOB data, and the OOB data error was calculated again, which was recorded 238 

as errOOB2. 239 

C. If there are N trees in the random forest, then the importance of the feature is 240 
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given as 241 

X𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒  =  ∑ (errOOB2 − errOOB1) / N    (7) 242 

This expression can be used as a measure of the importance of corresponding features 243 

because if a feature was randomly added with noise, the accuracy rate outside the bag 244 

was highly reduced, which indicated that this feature had a high influence on the 245 

classification results of samples; in other words, it was of high importance. 246 

 247 

3. Results and Discussion 248 

3.1 Correlation between Variables  249 

To accurately analyze the relationship between UEC and the different variables, we 250 

calculated the correlation between these variables, as shown in Fig. 4.  251 

 252 
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Fig. 4 Correlation thermodynamic diagram of variables 253 

In Fig. 4, the correlation of UEC, wastewater treatment capacity, annual load rate, 254 

moisture content of sludge, dry weight of sludge, BODi, BODe, CODi, CODe, NH3-Ni, 255 

and NH3-Ne are described by the thermodynamic diagram. The number on the color 256 

block represents the correlation between the corresponding variables of the abscissa 257 

and ordinate. A darker red implies a higher correlation, and a darker blue indicates a 258 

lower correlation. The UEC is highly correlated with BOD, COD, and NH3-N of 259 

influent and effluent (Fig. 4).  260 

  261 

3.2 Regression 262 

The analysis of the importance of the independent variables is presented in Table 1 and 263 

Fig. S1. The regression model had an R2 = 0.702, which was significantly higher than 264 

that of the Multiple Linear Regression, implying higher accuracy.  265 

As shown in Table 1 and Fig. S1, the most important variable was the wastewater 266 

treatment capacity, which is expected since this determines the sizing of pumps, air 267 

blowers and other equipment that consumes electricity (Torregrossa et al. 2018). This 268 

is followed by the annual load rate, which is also expected to be a major factor 269 

(Torregrossa et al. 2018). Wastewater treatment capacity and annual load rate can reflect 270 

the influence of the design and practical operation of WWTPs on energy consumption, 271 

with a total importance of 0.38. The high importance indicated that the design of a 272 
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WWTP was very important, so a clear treatment target would significantly affect the 273 

energy consumption of WWTPs. 274 

 275 

Table 1. Variables and their importance 276 

Variable Importance 

Wastewater treatment capacity (m3/d) 0.2130  

Annual load rate (%) 0.1758 

CODi /CODe 0.1655 

BODi /BODe 0.1170 

Moisture content of sludge (%) 0.1134 

NH3-Ni/NH3-Ne 0.0846 

Dry weight of sludge (ton) 0.0747 

Discharge standard 0.0560 

The removal efficiency of COD and BOD had a significant impact on the energy 277 

consumption of WWTPs, which also verified that the level of removal of COD and 278 

BOD highly affected the energy consumption of WWTPs (Longo et al. 2016). This is 279 

consistent with other studies, and the pollution load is consistent with the energy 280 

consumption load of WWTPs (Torregrossa et al. 2018). CODi/CODe is significantly 281 

more important than BODi/BODe since the pollutants measured by BOD are subset of 282 

pollutants measured by COD, so COD contains some pollutants that do not belong to 283 
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BOD. Second, the model may divide the pollutants that both belong to BOD and COD 284 

into the importance of BODi/BODe and CODi/CODe. These two factors may contribute 285 

to the finding that the importance of CODi/CODe is significantly higher than 286 

BODi/BODe. 287 

However, the removal efficiency of NH3-N, one of the primary pollutants in sewage, is 288 

of relatively low importance to UEC that is because the primary function of most 289 

WWTPs in China is to remove organic matter rather than denitrification, which leads 290 

to the lower importance of NH3-Ni/NH3-Ne. Some studies have shown that COD, BOD, 291 

and NH3-N are correlated (Luo et al. 2019) and the energy to power blower fans are 292 

actually the main factor in electricity consumption for the removal of COD, BOD, and 293 

NH3-N (Piotrowski and Ujazdowski 2020). Considering the fact that the smaller the 294 

number of highly correlated variables, the more convenient is the practical application 295 

of the model, we assigned the importance of the overlap between variables to the high 296 

correlation variable, which led to the low importance of NH3-Ni/NH3-Ne. Depending 297 

on the request to the accuracy of the model, NH3-Ni/NH3-Ne can be neglected during 298 

practical usage, but to analyze the model more clearly and completely we will still take 299 

NH3-Ni/NH3-Ne into consideration in the following discussion. 300 

There are limits to the moisture content of sludge, so there will be energy consumption 301 

to separate water from sludge. However, from Fig. 4 it appears that moisture content of 302 

sludge has low correlation with other variables, so its importance will be higher. During 303 
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sludge conditioning, drying, and incineration, a large amount of energy is required; 304 

however, in the current statistical yearbook of WWTPs, there is no data on energy 305 

consumed for sludge disposal. Therefore, we could not further analyze the importance 306 

of sludge treatment. 307 

The results in Table 1 show that compared with the data type variables, the importance 308 

of the discharge standard (Table 2) was low because BODi, CODi, and NH3-Ni are 309 

limited by discharge standard, so discharge standard is highly correlated to them. Since 310 

the current model is built to minimize the influence of this correlation, so the 311 

importance of discharge standard is low. Table 1 indicates that the discharge standard 312 

is low in importance; hence, in the following analysis, the discharge standard was not 313 

used to forecast the UEC of WWTPs. 314 

Table 2.  Discharge standard of COD, BOD, and NH3-N  315 

Parameter Class I A Class I B 

CODe (mg/L) 50 60 

BODe (mg/L) 10 20 

NH3-N e (mg/L) 5(8) 8(15) 

Note: The value in the bracket means standard at temperature ≤ 12 °C, which was 316 

not modeled in this study. 317 

3.3 Model Demonstration and Prediction of Energy Consumption 318 

An energy consumption model for WWTPs was established through training using a 319 
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large amount of data. By changing the input variables, we can predict the change in the 320 

energy consumption of a WWTP. We selected the following variables with high 321 

importance: design treatment capacity, annual average load rate, and removal ratios 322 

(BODi/BODe, CODi/CODe, and NH3-Ni/NH3-Ne) to obtain the prediction function. The 323 

model can be directly presented through this curve and it can be applied to the 324 

management of energy efficiency of real WWTPs.  325 

3.3.1 Wastewater Treatment Capacity 326 

From the predictive model shown in Fig. 5, it is evident that the wastewater treatment 327 

capacity is negatively related to UEC, and for wastewater treatment capacities from 328 

10,000 m3/d to 100,000 m3/d, the UEC decreases rapidly with an increase in the design 329 

treatment capacity. Above 100,000 m3/d there is minimal decrease in UEC, which is a 330 

consideration for the design of WWTPs. The overall trend is consistent with the finding 331 

of previous studies (e.g., Yang et al. 2021, Huang et al. 2021). What's more, this finding 332 

also follows the scale economy of WWTPs (Hernández-Chover et al. 2018). 333 
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 334 

Fig. 5 Predictive model of UEC as a function of wastewater treatment capacity with 335 

other variables constant. 336 

 337 

The construction scale of WWTPs in China can be divided into five categories 338 

(Ministry of Construction of China, 2001), as shown in Table 3: 339 

Table 3  Standard of construction scale of WWTPs in China 

Category Construction Scale 

Ⅰ 500,000~1,000,000 m3/d 

Ⅱ 200,000~500,000 m3/d 

Ⅲ 100,000~200,000 m3/d 

Ⅳ 50,000~100,000 m3/d 

Ⅴ 10,000~50,000 m3/d 

From the predicted data (Fig. 5), we found that the UEC of WWTPs with a scale of I, 340 
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II, and III was relatively low. Therefore, we can conclude that the WWTPs larger than 341 

100,000 m3/d have effectively reduced energy consumption, and there are 245 WWTPs 342 

in this range in the database, which is 9.91% of the total WWTPs considered in this 343 

study (Fig. 6). 344 

 345 

Fig. 6 (a) Kernel frequency distribution (b) Probability distribution of wastewater 346 

treatment capacity of WWTPs in the model (to make the figure clearer, all the WWTPs 347 

with a wastewater treatment capacity above 100,000 m3/d were not counted in the 348 

figure). 349 

The ordinate of a point on the curve in Fig.6 (a) shows the proportion of the scale that 350 

is reflected by abscissa of total WWTPs in China. The ordinate of a point on the curve 351 

in Fig.6 (b) shows the accumulated proportion of the scale smaller than abscissa of total 352 

WWTPs in China and the slope of the point shows the frequency. In Fig.6 (a) the curve 353 

peaks in Category V which means the scale of WWTPs concentrated in Category V and, 354 

after the peak, the number of WWTPs decreases with the scale in an overall trend. In 355 

Fig.6 (b), the tangent slope of the curve also shows that Category V includes most of 356 

the WWTPs in China. In short, Fig.6 shows the scale distribution of WWTPs in China 357 
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and we can find that most WWTPs in China are small-scale. 358 

 359 

3.3.2 Annual Load Rate 360 

Annual Load Rate means the percentage usage of wastewater treatment capacity over 361 

the year, it reflects the divergence of design and actual usage of WWTPs. As shown in 362 

Fig. 7, the annual load rate has a significant impact on the UEC. The UEC remained 363 

high when the annual load rate was less than 40%, but the UEC decreased significantly 364 

when the annual load rate was between 40% and 100%; meanwhile, the UEC remained 365 

stable in a low range after the annual load rate was more than 100%. (i.e., overload). 366 

However, as overload may damage the instruments and equipment, a load rate between 367 

60% and 100% should be maintained in the design and operation of WWTPs. The trend 368 

in this study corresponds well the results of Huang et al. 2021 and it also follows the 369 

rule of extensive models of different factory managements (Gerami et al. 2021). This 370 

finding indicates that it will be better to do more study on the amount of wastewater 371 

needed to be treated in one area before designing the treatment capacity of the WWTP. 372 
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 373 

Fig. 7 Predictive model of UEC as a function of annual load rate with other variables 374 

constant. 375 

 376 

3.3.3 Reduction Ratios 377 

In this section, the effects of CODi/CODe, BODi/BODe, and NH3-Ni/NH3-Ne on UEC 378 

are analyzed. As shown in Table 1, the importance of the UEC of COD removal was 379 

significantly greater than that of BOD and NH3-N, and UEC was primarily affected by 380 

COD removal. To achieve a comprehensive study, the influence of BOD removal and 381 

NH3-N removal on UEC is also discussed herein. However, the low importance is 382 

reflected on the ordinate of BOD and NH3-N. In general, the trends of COD and BOD 383 

is generally in line with Huang et al. 2021, while the trend of NH3-N is a little conflict 384 

with the common sense, we are going to explain it in the following discussion. 385 

 386 



 

23 

 

 387 

Fig. 8 Predictive model of UEC as a function (a) CODi/CODe, (b) BODi/BODe, and 388 

(c) NH3-Ni/NH3-N e with other variables constant. 389 

When the independent variable was too large, a flat response occurred in this region of 390 

the predictive model due to the lack of data, in other words, when BODi/BODe or NH3-391 

Ni/NH3-Ne was too large there will be insufficient data in the database to train the model 392 

at this level and the prediction will be the average of these data; therefore, these regions 393 

are not discussed in the following analysis. But with the construction of huge WWTPs 394 

in China, there will be more data in the future, reducing this issue. 395 

From the predictive model shown in Fig. 8 (a), it is seen that CODi/CODe and UEC are 396 

positively correlated; that is, the higher the COD reduction ratio, the higher the energy 397 
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consumption. As expected, a WWTP that seeks to have higher removal efficiency 398 

requires more energy. In the predictive model, a relatively flat response occurs when 399 

the reduction multiple is less than 9. From the available data, the average CODi/CODe 400 

was 9.23, near the edge of the region with a minimal slope, indicating that WWTPs had 401 

a high energy efficiency in the removal of COD. 402 

As shown in the predictive model in Fig. 8 (b), BODi/BODe and UEC are positively 403 

correlated for BODi/BODe in the range of 0–15 and 25–30, with a minimal slope 404 

(except for the platform) at 0–10, and a region with a slope almost 0 in the 15–25 range. 405 

From the available data, the average BODi/BODe was 18.59, in the middle of the region 406 

with a slope almost 0, implying that WWTPs had a high energy efficiency in the 407 

treatment of BOD, but requires further improvement. 408 

As shown in Fig. 8 (c), the overall trend of the predictive model of NH3-Ni/NH3-Ne 409 

indicates that the UEC decreases monotonically when NH3-Ni/NH3-Ne is lower than 5, 410 

increases monotonically after NH3-Ni/NH3-Ne is greater than 10, and finally tends to a 411 

constant value. A minimum slope is observed between 5 and 10. Therefore, the optimal 412 

value of ammonia nitrogen reduction should be between 5 and 10. When NH3-Ni/NH3-413 

Ne is less than 10, it is negatively correlated with UEC, which is contrary to the common 414 

understanding that a larger reduction multiple, leads to a higher energy consumption. 415 

The specific reasons for this require further analysis. However, the possible reasons are 416 

as follows: 1. As the importance of NH3-Ni/ NH3-Ne in UEC is low, which causes the 417 
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difference between the maximum and minimum values of the final prediction result to 418 

be ≤ 0.04 kWh, the measuring instrument may not be highly accurate. 2. When NH3-419 

Ni/NH3-Ne is 5–10, the reduction multiple is easily achieved. For a lower value, energy 420 

consumption may be required to limit the reduction multiple. This study aimed to 421 

predict the UEC of WWTPs if the plant upgrades to a higher standard, thus improving 422 

the removal ratios (CODi/CODe, BODi/BODe, and NH3-Ni/ NH3-Ne). The number of 423 

WWTPs applied Class I A were 1,041 and 1,184 in Class I B, with only 162 in Class II. 424 

Therefore, we primarily considered the improvement of the discharge standard from 425 

Class I B to Class I A. The specific discharge standards are listed in Table 2. 426 

The ratios CODi/CODe, BODi/BODe, and NH3-Ni/ NH3-Ne were used as variables in 427 

the model, since the discharge standard restricts CODe, BODe, NH3-Ne. Therefore, the 428 

following modifications were adopted in this study:  429 

y𝐶𝑂𝐷 =
𝐶𝑂𝐷𝑖/𝐶𝑂𝐷𝑒

𝑥𝐶𝑂𝐷
× 𝐶𝑂𝐷𝑒       (8) 430 

y𝐵𝑂𝐷 =
𝐵𝑂𝐷𝑖/𝐵𝑂𝐷𝑒

𝑥𝐵𝑂𝐷
× 𝐵𝑂𝐷𝑒       (9) 431 

y𝑁 =
𝑁𝐻3−𝑁𝑖/NH3−N𝑒

𝑥𝑁
× NH3 − N𝑒       (10) 432 

where 𝑦𝐶𝑂𝐷: 𝐶𝑂𝐷𝐼/𝐶𝑂𝐷𝐸  after upgrading to a higher class, 𝑥𝐶𝑂𝐷:  𝐶𝑂𝐷𝐸  of Class I 433 

A, 𝑦𝐵𝑂𝐷: 𝐵𝑂𝐷𝐼/𝐵𝑂𝐷𝐸 after upgrading to a higher class, 𝑥𝐵𝑂𝐷:  𝐵𝑂𝐷𝐸  of Class I A,  434 

𝑦𝑁: (𝑁𝐻3 − 𝑁𝐼/𝑁𝐻3 − 𝑁𝐸) after upgrading to a higher class, and 𝑥𝑁: (𝑁𝐻3 − 𝑁𝐸) of 435 

Class I A. 436 

From equation 4-6, a new value of  CODi/CODe , BODi/BODe , NH3 − Ni/NH3 − Ne 437 
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after the improvement of the discharge standard from Class I B to Class I A was 438 

calculated. The model predicted the UEC of WWTPs with the new data. 439 

The results showed that when the discharge quality of WWTPs was upgraded from 440 

Class I B to Class I A, the increase in the UEC of WWTPs varied due to the various 441 

effluent qualities. The UEC of WWTPs had an average increase of 17%, obtained from 442 

Equations 4-6.  443 

 444 

3.3.4 Model Validation 445 

As previously mentioned, the R2 of the model was 0.702. MSE = 0.00662 (kWh/m3)2, 446 

MAPE = 5.74%, RSME = 0.106 kWh/m3, MAE = 0.0416 kWh/m3, MedAE = 0.0416 447 

kWh/m3 and MSLE = 0.00327 (obtained from equations (1) to (6)), which are very low 448 

(Weber et al. 2020). These low evaluation metrics indicate that the model for UEC of 449 

WWTPs developed in this study was quite accurate. As shown in Fig. 9 and Fig. S2, 450 

the actual and predicted UEC exhibit the same trend when the UEC is not too high or 451 

too low. The predicted UEC was not accurate when the corresponding actual value was 452 

too high or too low because of insufficient data for fully developing the model. In fact, 453 

in practice, there are not many cases of too large or too small WWTPs, so the effect of 454 

these WWTPs are not significant. 455 
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 456 

Fig. 9 QQPlot and simplified kernel frequency distribution representing actual and 457 

predicted UEC for 347 WWTPs 458 

3.4 Comparison with other approaches 459 

Compared to the Data Envelopment Analysis, Random Forest is more stable when some 460 

input data is missing, which means a unified model can be made without considering 461 

special cases that one or more variables are missing. Considering the fact that it’s hard 462 

to set up a monitoring system that would include thousands of WWTPs across China 463 

with exactly the same variables, it would be impossible to build a normalized model 464 

using Data Envelopment Analysis.  465 

As mentioned in Section 3.1, the WWTP variables are correlated, so the accuracy of a 466 

Multiple Linear Regression model compared to a Random Forest model is relatively 467 

low. In this study, Multiple Linear Regression model was considered, but the R2 (0.147) 468 
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was too low. In comparison, the random forest model can achieve a much higher R2 469 

(0.702). Therefore, Random Forest is more suitable to build the model than Data 470 

Envelopment Analysis or Multiple Linear Regression. 471 

 472 

4. Conclusion  473 

In this study, an energy consumption model for WWTPs was developed using machine 474 

learning. The UEC of a WWTP can be predicted with a few key parameters by the 475 

model using the random forest algorithm. It can also predict the UEC of a WWTP for 476 

policy formulation and improvement of sewage treatment standards. This model can be 477 

a useful tool for investigating the water-energy nexus in WWTPs. Although the 478 

particular model in this study is based on data from Chinese WWTPs, it can be easily 479 

applied to WWTPs worldwide by changing the input data. In this study, we didn’t 480 

investigate the influence of local climate and treatment technologies due to insufficient 481 

data, which are also very important and deserve further research in the future. 482 

 483 
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